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Analytical evaluation of image formation in optical systems 
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Abstract. The methods of modern theoretical physics, in particular eigenfunction expansions 
and complex integration, are used to analyse image formation in optical systems. We solve 
here the problem of the refraction of a wavefront in a spherical boundary between two media. 
The fields are expanded in terms of spherical harmonics, and the amplitude distribution in 
the image is then evaluated by the method of stationary phase. Both aberrations and 
diffraction are included. 

1. Introduction 

All practical methods for evaluating the imaging properties of optical systems are based 
on ray tracing techniques. In spite of their extreme usefulness, they involve certain draw- 
backs which are especially evident when designing complex systems and when the per- 
formance is near the diffraction limit. Firstly, the effect of a change of the system para- 
meters on the image quality is highly nonlinear and lens design and optimization require 
both extensive experience and large computer programs. Secondly, ray tracing disre- 
gards the wave aspects of light and a fair amount of additional calculation is needed to 
obtain diffraction effects. 

The above reasons give justification to trying to find alternative methods and pursuing 
these even if they appear at first fairly complex. Here we study the application of methods 
analogous to scattering theory in quantum physics and to those applied in microwave 
engineering. 

A wave field in a homogeneous isotropic medium can be expanded in terms of a 
complete set of orthogonal functions and this expansion is valid everywhere outside 
the source of the radiation. If the expansion is in terms of spherical harmonics, the 
successive terms in the expansion can be regarded as due to multipole radiation of in- 
creasing order. Similarly, a converging wavefront can be expanded in multipoles with 
respect to an arbitrary point. We are then confronted by two problems. 

(i) How is a multipole radiation field changed at a boundary of two media of different 
indices of refraction? 

(ii) IS it possible to combine successive refractions so as to determine the wavefield 
emerging from a complex optical system? 

In the following we develop the analytical techniques for solving the first of these 
problems in the case of a spherical boundary between two media. Problem (ii) will be 
treated in a subsequent paper. 

The analogy with the quantum scattering problem as well as the following calcula- 
tions show that it is not possible to have a complete understanding of a problem of this 
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type in terms of intensity I = [AI2 (ray tracing). It is necessary also to have the phase 
information, ie to work with the amplitude A .  

We wish to stress that the results of this and the two subsequent papers form only an 
approach to the problem. At this stage it is not clear how this treatment, when developed 
to a practical computation scheme, would relate to the well known methods of calcula- 
ting image formation in optical systems. 

2. Single spherical boundary and point object on axis 

We start with the simplest possible situation depicted in figure 1. The spherical surface 
with centre at 0 and radius r separates two media with refractive indices n and n'. 
Assume that a monochromatic point source is located at P. Let the magnitude of the 
wavevector in vacuum be k = w/c so that in the two media it is nk and n'k. 

Figure 1. 

Inside a region which is free of currents and charges, the amplitude at r is 

&, t )  = A(r) e'"'. (2.1) 

If we disregard polarization, A(r)  is a scalar function (eg the value of the electric vector) 
which satisfies the wave equation 

VZA+n2k2A = 0. (2.2) 
If a complete orthogonal set of solutions of (2.2) is found, then any A(r) can be expressed 
in terms of the set. 

In order to satisfy the boundary conditions later on, we now expand all the wavefields 
of the problem in terms of spherical harmonics centred at 0. Then the solutions of 
(2.2) are in spherical coordinates (r ,  e,#)  (van Blade1 1964) 

A(r) = Bl,h!2)(nkr)Yr(0, #)+ C,,hl')(nkr)Yr(O, 4). (2.3) 
1.m I , ,  

Here (see Arfken 1970) h{"(x) and hj2)(x) are the spherical Hankel functions of order 
I ,  Yy(0,  #) are spherical harmonics, and B,,, C,, are complex coefficients. In terms of 
Legendre polynomials Py(cos 0) we have 

The asymptotic expressions of hj') and hi2) are 

hj')(x) -+ ( -  i ) I+  e!kx/kx x-00 

hi2)@) + i'+ e-ikx/kx x + m. 
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If (2.3) is an outgoing wave, then only the second type of asymptotic behaviour is allowed, 
and all C,, must be zero (van Bladel 1964). Further, the situation in figure 1 is symmetric 
around the z axis, and therefore all the coefficients E,, with m # 0 are zero. We find 

B,h{2)(nkr)P, (cos 8). 
1=0 

In particulaF, the simple spherical wave 

exp( - inklr -ti) 
Ir-21 

A(r) = (2.7) 

originating at a point source at t can be written in the form (2.6). The coefficients B, are 
most simply found by recalling the well known formula (van Bladel 1964) 

exp( - inklr -tl) 00 

lr -4 1=0 
= -ink (21+ 1)P, (- cos e) j1(nkr)hl2)(nkt) 

which is valid for r < t .  The minus sign in cos 8 is because the angle between f and r in 
figure 1 is II - 8. 

We now find the amplitude at point P,?’, in the second medium. If r is a point at the 
boundary surface and A(r) the amplitude at  that point, the effect caused by this element 
on the amplitude at point?’ is given by the Green function (propagator) (van Bladel 1964) 

exp( - in’klr 4’1) 

)r -f ’1 G(r,t‘) = 

The total amplitude at point P is then the integral 

A(?’) = I d2r G(r,f’)A(r). 
surface 

(2.9) 

(2.10) 

The surface is assumed to have a finite aperture so that only rays for 8 < 8 can pass 
through. We then have 

(2.11) 

Using (2.8), integrating over c$ and writing z = cos 8, 2 = cos-8, we get 

A(t’) = - nn‘k22x 
1 

dz(21 i- 1)(2l’+ l)PI( - z)PI.(z)jI(nkr)jI,(n’kr)h~2)(nkt) ?L 
x hl?’(n’kt’). (2.12) 

The integral over z is evaluated in appendix 1 (see (A.7)). Further, we use 

(2.13) 

(2.14) 
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and the asymptotic forms of J,++(x)  and Hi:)+(x) which are derived in appendix 2 (see 
(A. 13), (A. 14)). Then we find 

sin([ - I' )B 
I - I '  [ (n2k2r2 - 12)(nt2k2r2 - r 2 ) ( n 2 k 2 t 2  - 1 2 )  1 (lIr)1/2 e- A(t') = 8- 

l 
(r2tt')'/2 ,,,, 

~ ( n ' ~ k ~ t ' ~ - l ' ~ ) ] - ' / ~ c o s  cos@;. exp( -iY,-iY;,). (2.16) 

The phase factors are 

and and are obtained by substituting 

n n', t -, t', 1 4  I'. 

(2.17) 

(2.18) 

(2.19) 

The asymptotic formulae for PI, J , ,  H, are correct to order 1- '. In (2.16) we have also 
replaced l + f  by I ,  l ' + f  by I' ,  and thus neglected terms of order I - ' .  Now the main 
contribution to (2.16) comes when I ,  I' N kd where d is of the magnitude of the macro- 
scopic dimensions r, t ,  t' of the system. In practice kd ?: 2nd/ll is of the order lo5 and thus 
the results are accurate to some lo-'. Also because 1 is large and all functions vary 
slowly in I ,  all sums over 1 can be replaced with integrals over 1. The resulting errors are 
of the order I - ' .  For the validity of this method when 1 is regarded as a continuous 
variable, it is essential to interpret ( -  1)' as e-in1 in (2.15); this procedure may be justified 
but will not be discussed here. 

In (2.16) the function sin(1- l ')O/(l- I ' )  vanishes rapidly for 11 - I'I > 448 .  In practice 
8 is between 10- and 4 2 .  Then only a strip of width less than 100 in the 1)' plane con- 
tributes to (2.16) (see figure 2). Using the formula (Gradshteyn and Ryzhik 1965) 

m 

we see that there are possibly upper arid lower limits for 1 set by 8, and we get 

(2.20) 

I[(n2k2r2 - 12)(nt2k2r2 -12)(n2k2t2 -12 ) (n f2k2 t r2  - 1 2 ) ] -  lI4 
1 

A(t') = 8n- 
( r 2 W 2  i I  

x e-inf cos @, cos @is exp(-iY,-iY;,). (2.21) 

Figure 2. The region of integration in the I ,  I' plane. 
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Assuming for a moment that 1, and Z2 are not important, it is seen that in summing 
over 1 in (2.21), a sizable contribution results only from an interval where the phase 

$I = *@lk@;-Yl-Y;-771 (2.22) 

varies slowly. This can be interpreted as phase coherence within an interval in 1. One 
has 

a@, -= -cos-l(&) 

az (2.23)  

and thus 

- 0 1  = +cos-l(  &) f e o s - l (  A) +cos- 1 (A) +cos- 1 (A) -7742.24) 
ai 

In a situation of the type depicted in figure 1 one has n > n‘, t, t‘ > r .  Then a$,/a1 = 0 
only when the first and second signs in (2.24) are + and - , respectively. If 1 = I ,  is the 
solution of a4,/al = 0, then calculation of aZ$JdlZ and use of equation (A.9) gives 

4 t ’ )  = I’W’H exp[i($,, - $741 
2n l I 2  

x (nfZk2t’2 - 1;) ] -  114 

(2.25) 

l,[(n2k2r2 - Z;)(nr2k2rz - 1,2)(n2k2tZ - 1;) IA(t’)l = 277 ___ ( - Br’tt’) 

(2.26) 

B = - - - = ( n  a24 2 k 2 y 2  - 1;)- 112 - (nf2k2r2 - 1; ) -  112 + ( n 2 k 2 t 2  - 1;)- 112 
ai; 

+ (n’2k2t12 - 1;)- 1/2.  (2.27) 

Let us now consider the situation when 1 is much smaller than its maximum value 
The phase $lo is given by (2.22) for Z = 1 , .  

( I  << lo6) but large enough that the asymptotic formulae are valid ( I  >> 10). The limit 

cos- lx  -+ +n-x-&x3 (2.28) 
x-0 

means for a$,/al = 0 that 

1 +- +‘) (2.29) ( r ~ k t ) ~  ( n ‘ l ~ t ‘ ) ~  ’ 

This implies that 1, is zero if 

1 1 1 1  
nr n’r nt n‘t’ 

+-+- = 0. --- (2.30) 

This equation is the familiar formula (n-n’) /r  = n/s+n‘/s‘ written for t = s - r  and 
t‘ = s‘ + r .  Now the small values of I get their amplitude mainly from small values of 8, 
so that it is easy to understand that the intensity at  the gaussian image point (2.30) is due 
to phase coherence at small 1. 

When t‘ increases from the gaussian value, the left-hand side of (2.29) becomes 
negative, 1, does not exist and the intensity vanishes. When t‘ decreases, (2.29) gives very 
roughly lo - [(tb-t’)/tb]112. Because B goes as 1 ; ,  A@’) starts from a constant. With 
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further change in t’, the limit 1, in (2.21) is met and A(t’) goes to zero. An accurate de- 
scription of both the amplitude and phase of A@’) can be obtained by solving l ,  numeri- 
cally from &#+/a1 = 0 and substituting into (2.25H2.27). 

The preceding considerations apply for an aberration limited image. To include 
diffraction, we must consider the double summation in the I ,  I’ plane accurately also in the 
I - I’ direction. The phase in the I ,  I’ plane is 

(2.31) $(l, I’) = Dl - a).;. - Y1- Y; ,  - 111. 

The derivative with respect to U = I - I’ at 1 = I’ is 

When 1 -+ 0, also x -+ 0, and thus in (2.21) I ,  = 0. The upper limit I ,  results from 

(2.33) 

The exact (to order llnkr) value of A@’) can be obtained by summing (integrating) (2.21) 
numerically from 0 to 1,. 

The width of the region where $I is stationary is seen from $I N $ 1 , + ~ B ( l - l , ) 2  to 
be 2(2/B)”’. Thus the image is diffraction-limited if from (2.33) 1, << 2(2/B)’/, and 
aberration-limited if I ,  >> 2(2/B)’/’. These, of course, lead to the well known criteria. 

The intensity in an off-axis point r‘ (caused by an on-axis object point) is treated 
almost similarly. The argument z in PI.(z) in (2.12) is the cosine of the angle between 
r and r’. If a‘, p’ are the azimuthal and polar angles of r‘ (see figure 3), then one can use 
the formula 

4n 
PI.(COS y‘) = - C Yr’(a’, p)YF‘(e, 4). 21’+ l”  

r - t ,  r - t ’  

Figure 3. 

Integration over 4 now gives 2718,.,, and we find instead of (2.12), 

A@’) = -nn‘k22n dz(21+ 1)(21’+ l)Pl( -z)Pl.(z)PI.(cos a’)jl(nkr) 
1, l ‘  s1 f 

x j,,(n‘kr)h12)(nkt)hl?)(n’kt’). 

(2.34) 

(2.35) 
In the phase c$~, (2.22) there will then be an additional term fa’/- There are now two 
terms in A@’), which have saddle-points for 84,/8I = +a, (see (2.24)). Also the limits I ,  
and 1, are changed due to the additional term +a’ in (2.32). Otherwise the computation 
of A@’) is as earlier. 
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3. Off-axis object point 

If t and t' are not on the z axis, the amplitude at t' is still given by (2.10) and (2.7). The rele- 
vant expansion is then 

exp( - inklr -tl) OD 

lr--tl 1=0 
(3.1) -- - -ink e (21+ l)Pl(cos y)jl(nkr)h12)(nkt) 

and the similar primed expression for the second medium. The notation is that shown 
in figure 3. One can then write P1(cos y) in terms of the polar and azimuthal angles a, 
for t and 8, t$ for r using the formula 

and similarly for Pl(cos y'). Then A@') becomes 

(1 - m) !(I' + m) ! 
( I  + m) !(l' - m)! 

A ( t )  = - nn'k22n (21 + 1)(2r + 1 )  
1.1' m 

1 

x I dzPy(z)P; "(z)P;l(cos a)P; "'(cos a') @')jl(nkr)jl(n'kr) 

x hj2'(nkt)hp(n'kt'). (3.3) 

In (3.3) we have made use of (2.4) and integrated over 4 which gives 2~.6,,,, . After this 
the sum over m' has been taken. 

The z integral is evaluated in (A.6). The use of (2.13), (2.14), (A.13), (A.14) then gives 

( I -  m)!(I' - m ) ! )  'I2 ( 1' - m2 

(1' sin2 8- m2)'/' + ( I ' ~  sin2 8- m2)'/' sin(w, - wl.) 
X Py(cos a)Pr(cos a') 

l + I '  1-I' 

The phases w1 and wl, ,  due to the 8 integral, are given by 

The derivative is simply 

and thus for u = 1-1' weget 

a(ol-W,.) 1 I' = -cos- 1 
av 2 (3.7) 

We see again that only small values of 11 - I'I contribute. Denoting by x the derivative of 
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the phase (see latcr equations (3.22), (3.23)) we see that, due to (2.20) we get the con- 
straint 

Then we can make the following replacement in (3.4) 

(3.9) 

The phase of the quantity to be summed over 1 and m in (3.4) is, on the strip 1 = l’, equal 

(3.10) 
to 

with 
41, m) = -01 + 0: -Y l  - Y; k w,(u)+ o,(a’)+ mp-mp’ 

m 
w,(a) = 1 cos- 

If we write 
A ( t )  = 1 lAl,,,(t’)l ei+ff*m) 

L m  

the coefficient is 

x ( d 2 k 2 r 2  - 12)(n2k2r2 - i2)(n12k2t’’ - 1 2 ) ] -  

The derivatives of 4(1, m )  with respect to I and m are 

(3.12) 

(3.13) 

-- ad$, ai m)  - +cos-1(-&.) -cos-(&) +cos-l(&) +cos+) 

The signs in (3.14) result from the reasoning given after equation (2.24). 
The equations 

give the point i o ,  m ,  where the phase is stationary. 
The second derivatives are 

(3.16) 

(3.17) 
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(3.18) 

(3.19) 

The integrals over 1 and mare then evaluated near the stationary point by the well known 
formula 

211 
(BD - C2)”2 ‘ 

dx dy exp[ - 8 B x 2  + 2Cxy + Dy’)] = (3.20) 

Collecting our results we have 

The quantities 0, Y and o are defined in (2.17), (2.18) and (3.11), and B, C and D are 
defined in (3.17H3.19). The pair l o ,  m,  is a solution of (3.16) (see also (3.14H3.15)). In 
equations (3.14H3.19), (3.21) there are four sign combinations. Each of these may give a 
solution l,,m,, and if there are several solutions their contributions must be added 
together. 

Finally, we must consider the constraint (3.8). The derivative of the complete phase 
in (3.4) is 

This is evaluated at 1 = l’, 

(3.22) 

(3.23) 

In the sum over I ,  m, only those pairs 1, m are included which satisfy (3.8). When the 
method of stationary phase is used to evaluate this sum, the pair I , ,  m, must satisfy (3.8). 
When the stationary point I,, m, moves outside the region (3.8), the intensity decreases 
exponentially. 
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4. Discussion 

We have evaluated analytically the complex amplitude A@') in the image space due to a 
point source at t in object space. To  be able to discuss the successive refractions in a 
real system, we must be able to image also a source which has a finite extension. This can 
be done using the present results by simply integrating over the intensity distribution in 
the object. This, however, requires so much computing that no practical applications 
would be expected. A completely different situation arises, when one realizes that the 
amplitude distribution in the intermediate image space is not needed, because the 
expansion in spherical harmonics is equivalent to it and can be used directly to describe 
the wavefront incident on the next surface. The case of successive refractions will be 
treated, using the present results, in a separate paper. 
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Appendix 1. The integral J dzC(z)P;",(z) 

Because P;", P;" are solutions of a self-adjoint second-order differential equation, the 
integral 

s,' dz P;"(z)Plf(z) 

can be evaluated in terms of the wronskian. The Legendre differential equation gives the 
equality 

1 h' m2 
I = J2' dzP;"(z)[i((l-z2)T dP;iz)) -- P;l(z) = - I'(l' + 1) dzP;(z)Py(z). (A.2) 

Partial integration of the left-hand side of (A.2) results in 

I = h' P;"(z)( (1 47 dplf(z)) -1 dz ($p;oi (1 -z2)( :Plf(z)) 

mz 
1-z 

1 

- 1 dzP;"(z)7Plf(z). 

Interchanging 1 and I' in (A.2) and (A.3) will give a similar expression for 

- I ( I +  1) dz P;"P;t. s 
Taking the difference then results in 

1 P;"'(S)P;l(P) - P;"(i)Plf'(S) 
dz P;"(z)Plf(z) = (1 - Sz) 

l ( l+ l ) - I ' ( I '+ l )  

64.3) 

('4.4) 
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In the limit of large 1, m the derivative of P;"(z) is, according to (A.28), equal to 

d 2 (I+m)! 'I2 P - m 2  
--p;"(z)= dz (--) R I  (l-m)! ( I' sin2 8 - m 2  ) 

3 + (//sin2 e) [sin2 e - (m2/12)] 
[sin2 e - (m2/r2)11'2 cos( )+ 

Substituting into (A.4) and approximating I + ;  N I ,  we get 

( I -  r)(I + 1') 1 dz P;"(z)P;l(z) 

x [ ( I z  sin2 e-m2)1/2+(1'2 sin2 8-m2 ) I  l l 2  

In the case m = 0 we get 

Appendix 2. Asymptotic forms of J l  , H ,  , fl  

The principle of stationary phase is here used to evaluate Hi2)(z), J,(z) and P;"(cos 0) for 
large order. Consider the integral 

in the limit s + CO. If f ' ( z )  has in the interval -A, A a zero at z = zo, then at  large s 
only the region near zo contributes to  (A.8). Taking the Taylor expansion of f(z) near 
z = zo gives (Born and Wolf 1964) 

For the real part we have 

(A.lO) 

The Bessel function J,(z) and H,(z) have the integral representations (Abramowitz 
1965) 

(A. 1 1) 
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1 
HI2'(z) = ; JL, exp[$z(e' -e-') - It] dt. (A. 12) 

The path of integration is shown in figure 4. Using (A.lO) and (A.9) one easily obtains 

(A. 13) 

i plane 

I 
Figure 4. Contour of integration for Hiz ' ( z ) .  

The asymptotic expressions of J,(z) and Hi2'(z) are also given in the literature 
(Watson 1948). There it is further shown that when for fixed I the argument z grows, 
then for z > I both J,(z) and Hi2'(z) decrease exponentially. 

We now consider P;"(cos 8) in the limit I ,  m -+ cc with m/l fixed. There seems to be 
no previous treatment of this case in the literature. If m is an integer, P;"(cos 8) has the 
integral representation (Abramowitz 1965) 

( l+m)!  (-i)"' 
P;"(cos 8) = - ~ (cos 8 + i sin 8 COS t)' eimt dt. I !  271 I-, (A. 15) 

We use the Condon-Shortley phase for P;", which makes all P;" real, and thus (A.15) 
differs by the factor (-,i)"' from the expression in Abramowitz (1965). Let us denote 
x = m/l( d 1) and consider the integral 

(A. 16) 

(A. 17) 
J - n  

Then 

f( t )  = ixt + ln(cos 8 + i sin 8 cos t )  (A.18) 

-i sin 8 sin t 
cos 8+i sin 8cos t 

f'(t) = ix+ 

For convenient notation we define p through 

(A.19) 

tanhp = x. (A.20) 
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Then f'(t) vanishes at  a point t = to  where 

sin(to - ip) = sinh p cot 8. 

The real and imaginary parts of to  are 

Re to  = sin- '(sinh p cot e) 
Imt, = p. 

517 

(A.21) 

(A.22) 

Thus the integrand in (A.17) has a saddle-point provided that lsinh p cot 81 < 1 or 

1x1 ,< Jsin81. (A.23) 

For 1x1 < /sin 81 there are two saddle-points to', t i  situated symmetrically with respect 
to the line t = 4 2  (figure 5) .  

t plane I I 

Figure 5. Path of integration and saddle-points in the evaluation of P;"(cos 6) for large 1. m. 

The path of integration can be modified into C ,  in figure 5 ,  and then the contribu- 
tions outside the immediate vicinity oft: and t i  vanish for I -+ CO. We then use (A.9) 
after first computing 

exp(f(ti)) = cosh p exp[i cos-'(cosh p cos 8) 

+i  tanh p Arc sin(sinh f i  cot e)] 
exp(f(t;)) = cosh p e-@ exp[ -i cos- '(cosh p cos 8) 

+in tanh - i tanh p Arc sin(sinh p cot e)]. 

(A.24) 

Here Arc sin x means the branch of sin-' x which gives function values between 0 and 
~ 1 2 .  Also we find 

(1 -cosh2 pcos' 8)'jZ 
f "(t:) = exp{ fi[cos-'(cosh p cos 8)+$7~]>. (A.25) 

cosh 

Then (A.9) gives, for M even 

[(2n/1) cosh p] ' ' 2  
(1 -cosh2 pcos2 8)1/4 

I, = (cosh /3 e-ptanh@)l 2 cos[(/ + $) 

x cos- '(cosh p cos.8) + 1 tanh p Arc sin(sinh p cot 8)-&r] (A.26) 
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and for m odd one has 2i sin( 
we get 

) instead of 2 cos( ). Collecting the preceding formulae 

1 
xcos [ (l++)cos-' ((I2 -m2)112 cos 0 )  

m 
-mcos-' 

Using Stirling's formula we get 

- m cos- 

The special case m = 0 gives 

(A.27) 

(A.28) 

(A.29) 

Equation (A.28) is valid for Iml < llsin 81. When Iml increases past llsin 81, the saddle- 
points disappear and the value of PT(cos e)  decreases exponentially. In the limit I -, CO 

the region ImJ > llsin 61 does not contribute and it can be neglected in the m summa- 
tions. 
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